Нажмите "Enter" для перехода к содержанию

Kaggle за 30 минут практическое руководство для начинающих

0

Прежде чем начать покорение Kaggle, необходимо зарегистрироваться на сайте. Переходим по ссылке и нажимаем кнопку Register. У вас будет два варианта: зарегистрироваться через аккаунт Google или по адресу электронной почты. Получаем подтверждение на почту, логинимся – готово, теперь вы в Kaggle сообществе.

Следующий уровень – Участник (Contributor). Достичь его можно несколькими простыми действиями:

  • Запустите 1 скрипт или notebook.
  • Сделайте 1 сабмит в любое соревнование.
  • Напишите 1 комментарий.
  • Сделайте 1 upvote (аналог лайка – стрелочка вверх).

Ниже вы найдете подробное руководство о том, как совершить эти действия и получить значок Contributor.

Что есть на Kaggle?

После регистрации мы оказываемся на главной странице ресурса и видим там несколько разделов.

Ниже панели поиска находятся теги, по которым вы можете отобрать «нотбуки», которые вас интересуют.

Стрелочка под названием – это тот самый Upvote, по количеству которых определяется релевантность. Рекомендую выбрать интересующий вас notebook, лайкнуть его, прокомментировать и нажать кнопку Copy and Edit. Таким образом вы сохраните его у себя в профиле (аналог форка на GitHub), сможете запустить ячейки внутри него и получить описанную выше плашку Kaggle Contributor.

  • General – всё, что связано с самим Kaggle (анонсы, дискуссии по поводу прошедших соревнований) и жизненными циклами моделей машинного обучения.
  • Getting Started – аналог предыдущего раздела, но для новичков. Рекомендуется для посещения в первую очередь.
  • Product Feedback – отзывы о сайте. Если в процессе работы на Kaggle вы столкнулись с техническими проблемами, вам сюда.
  • Question & Answers – советы по технической составляющей от других дата-сайентистов.
  • Learn – вопросы и дискуссии, которые касаются раздела Courses на сайте.

Как принять участие в соревновании Kaggle?

Найдите приемлемое для вас соревнование. Потом нажмите Join Competition и согласитесь с условиями.

  • Overview – обзор соревнования. Здесь изложена суть проблемы, которую нужно решить. Также в этом разделе указана метрика, которая используется в состязании и другие требования (например, формат «сабмита»).
  • Data – данные, по которым нужно добиться наилучшего показателя метрики.
  • Code – тут участники соревнования выкладывают свои идеи и решения. Этот раздел рекомендуется для посещений в первую очередь, так как вы можете подсмотреть идеи для своих решений.
  • Discussion – обсуждение проблем соревнования, методов решения, нюансов.
  • Leaderboard – доска лидеров. В продвинутых соревнованиях на ней присутствуют золотая секция для денежных призов, серебряная для поощрительных и бронзовая для медалей Kaggle.
  • Rules – правила соревнования.
  • Team – есть не во всех состязаниях. Лучше всего создавать команды на более сложных этапах покорения Kaggle, для начала – пробуйте сами, чтобы обзавестись необходимыми навыками.

Итак, вы разобрались с интерфейсом. Классическая цель соревнования выглядит так: на основе имеющихся данных вам необходимо выбить лучший показатель метрики.

Чтобы составить решение прямо на сайте, вам нужно:

  • Создать новый notebook в разделе Code.
  • Добавить туда данные соревнования, нажав кнопку Add data.
  • Сохранить notebook.
  • После этого у вас высветится меню, где нужно нажать Submit to Competition.

Теперь ваше решение появилось в турнирной таблице.

Самые простые соревнования для начинающих.

    . Пожалуй, самое известное соревнование для новичков. Датасет «Титаника» содержит данные пассажиров одноименного корабля. Ваша цель – построение такой модели, которая наилучшим образом сможет предсказать, остался произвольный пассажир в живых или нет. Это типичная задача классификации.
    . Перед нами стоит задача предсказания стоимости дома на основе множества признаков (фич), вроде местоположения, площади, количества комнат, наличия гаража и т.д. С уществует и более продвинутая версия этого соревнования – Advanced Regression Techniques. Здесь нужно решить задачу регрессии, поэтому вы можете наполнить модель линейными методами.
    . Запускается каждый месяц с января 2021 года. Ваша цель – предсказать столбец target на основе простых, табличных данных. В отличии от описанных выше бесконечных соревнований, Tabular Playground длится ровно месяц, что делает его более динамичным. Здесь будет меньше открытых нотбуков с готовыми ответами, но больше пространства для создания собственного, уникального решения.

Почему стоит участвовать в соревнованиях Kaggle?

Если вы еще не пробовали Kaggle, самое время начать. Соревнования помогут вам научиться решать реальные задачи из области Data Science и выбрать одно из ее многочисленных направлений. В режиме непрерывной практики за неделю вы узнаете больше, чем за 3 месяца изучения теории. Более того, медали с соревнований будут плюсом при трудоустройстве: работодатели обязательно обратят внимание на ваш практический опыт. В следующей статье мы разберемся с одним из самых базовых соревнований Kaggle – House Prices.

Если вы только начинаете путь в профессию и еще не определились со специализацией, подумайте о применении методов науки о данных в медицинской отрасли: сейчас это одно из самых перспективных направлений. Образовательная онлайн-платформа GeekBrains проводит набор на факультет Data Science в медицине, на котором студенты научатся с нуля решать задачи в области медицины. Обучение длится 18 месяцев, плюс 6 месяцев занимает практика по медицинской специализации. По итогам получите 15 проектов в портфолио и гарантию трудоустройства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *